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‘We point out a common misconception created
by newspapers and magazines. They mention
food values in calories and urge us to restrict
diet intake to below 2400 calories. What they
should be saying is kilocalories (kcal) and not
calories. A person consuming 2400 calories a
day will soon starve to death! 1 food calorie is
1 kcal. |

6.10.6 The Principle of Conservation of
Energy

We have seen that the total mechanical energy
of the system is conserved if the forces doing work
on it are conservative. If some of the forces
involved are non-conservative, part of the
mechanical energy may get transformed into
other forms such as heat, light and sound.
However, the total energy of an isolated system
does not change, as long as one accounts for all
forms of energy. Energy may be transformed from
one form to another but the total energy of an
isolated system remains constant. Energy can
neither be created, nor destroyed.

Since the universe as a whole may be viewed
as an isolated system, the total energy of the
universe is constant. If one part of the universe
loses energy, another part must gain an equal
amount of energy.

The principle of conservation of energy cannot
be proved. However, no violation of this principle
has been observed. The concept of conservation
and transformation of energy into various forms
links together various branches of physics,
chemistry and life sciences. It provides a
unifying, enduring element in our scientific
pursuits. From engineering point of view all
electronic, communication and mechanical
devices rely on some forms of energy
transformation.

6.11 POWER

Often it is interesting to know not only the work
done on an object, but also the rate at which
this work is done. We say a person is physically
fit if he not only climbs four floors of a building
but climbs them fast. Power is defined as the
time rate at which work is done or energy is
transferred.

The average power of a force is defined as the
ratio of the work, W, to the total time ¢ taken

Py, = n
The instantaneous power is defined as the
limiting value of the average power as time
interval approaches zero,

p- IV

d¢
The work dW done by a force F for a displacement
dr is dW = F.dr. The instantaneous power can
also be expressed as
dr

P=F.—
dit

(6.21)

(6.22)

where v is the instantaneous velocity when the
forceis F.

Power, like work and energy, is a scalar
quantity. Its dimensions are [ML*T?]. In the SI,
its unit is called a watt (W). The wattis 1J s,
The unit of power is named after James Watt,
one of the innovators of the steam engine in the
eighteenth century.

There is another unit of power, namely the
horse-power (hp)

l1hp=746W
This unit is still used to describe the output of
automobiles, motorbikes, etc.

We encounter the unit watt when we buy
electrical goods such as bulbs, heaters and
refrigerators. A 100 watt bulb which is on for 10
hours uses 1 kilowatt hour (kWh) of energy.

100 (watt) x 10 (hour)
= 1000 watt hour
=1 kilowatt hour (KWh)
=102% (W) x 3600 (s)
=3.6x 10%J

Our electricity bills carry the energy
consumption in units of kWh. Note that kWh is
a unit of energy and not of power.

=Fv

P Example 6.11 An elevator can carry a
maximum load of 1800 kg (elevator +
passengers) is moving up with a constant
speed of 2 m s7!. The frictional force opposing
the motion is 4000 N. Determine the
minimum power delivered by the motor to
the elevator in watts as well as in horse
power.




The downward force on the elevator is
F=mg+ Ff= (1800 x 10) + 4000 =22000 N

The motor must supply enough power to balance
this force. Hence,

P=F.v =22000 x 2 =44000 W =59 hp

6.12

In physics we study motion (change in position).
At the same time, we try to discover physical
quantities, which do not change in a physical
process. The laws of momentum and energy
conservation are typical examples. In this
section we shall apply these laws to a commonly
encountered phenomena, namely collisions.
Several games such as billiards, marbles or
carrom involve collisions.We shall study the
collision of two masses in an idealised form.

Consider two masses m, and m,. The particle
m, is moving with speed v,,, the subscript T
implying initial. We can cosider m, to be at rest.
No loss of generality is involved in making such
a selection. In this situation the mass m,
collides with the stationary mass m, and this
is depicted in Fig. 6.10.

y
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my, ~a Vs
Collisionofmass m,, withastationary mass m,.

The masses m, and m, fly-off in different
directions. We shall see that there are
relationships, which connect the masses, the
velocities and the angles.

6.12.1

In all collisions the total linear momentum is
conserved; the initial momentum of the system
is equal to the final momentum of the system.
One can argue this as follows. When two objects
collide, the mutual impulsive forces acting over
the collision time At cause a change in their
respective momenta :

Ap, =F,, At
Ap,=F,, At

where F , is the force exerted on the first particle

by the second particle. F,, is likewise the force
exerted on the second particle by the first particle.
Now from Newton’s Third Law, F, = -F,,. This
implies
Ap, +Ap,= O

The above conclusion is true even though the
forces vary in a complex fashion during the
collision time At. Since the third law is true at
every instant, the total impulse on the first object
is equal and opposite to that on the second.

On the other hand, the total kinetic energy of
the system is not necessarily conserved. The
impact and deformation during collision may
generate heat and sound. Part of the initial kinetic
energy is transformed into other forms of energy.
A useful way to visualise the deformation during
collision is in terms of a ‘compressed spring’. If
the ‘spring’ connecting the two masses regains
its original shape without loss in energy, then
the initial kinetic energy is equal to the final
kinetic energy but the kinetic energy during the
collision time Atis not constant. Such a collision
is called an elastic collision. On the other hand
the deformation may not be relieved and the two
bodies could move together after the collision. A
collision in which the two particles move together
after the collision is called a completely inelastic
collision. The intermediate case where the
deformation is partly relieved and some of the
initial kinetic energy is lost is more common and
is appropriately called an inelastic collision.

6.12.2

Consider first a completely inelastic collision
in one dimension. Then, in Fig. 6.10,

6,=6,=0

myv,, =(m+m,) v, (momentum conservation)

S L S 6.93
f m, +m, 1 6.23)

The loss in kinetic energy on collision is

1 1
AK=5mlvlzi —E(m1 +m, )}
L L™ s ing Bq. (6.23)]
2 " 2 miem, U



An experiment on head-on collision

In performing an experiment on collision on a horizontal surface, we face three difficulties.
One, there will be friction and bodies will not travel with uniform velocities. Two, if two bodies
of different sizes collide on a table, it would be difficult to arrange them for a head-on collision
unless their centres of mass are at the same height above the surface. Three, it will be fairly
difficult to measure velocities of the two bodies just before and just after collision.

By performing this experiment in a vertical direction, all the three difficulties vanish. Take
two balls, one of which is heavier (basketball/football /volleyball) and the other lighter (tennis
ball/rubber ball/table tennis ball). First take only the heavier ball and drop it vertically from
some height, say 1 m. Note to which it rises. This gives the velocities near the floor or ground,

just before and just after the bounce (by using v*> =2gh ). Hence you

will get the coefficient of restitution.

Now take the big ball and a small ball and hold them in your
hands one over the other, with the heavier ball below the lighter
one, as shown here. Drop them together, taking care that they remain
together while falling, and see what happens. You will find that the
heavier ball rises less than when it was dropped alone, while the
lighter one shoots up to about 3 m. With practice, you will be able to
hold the ball properly so that the lighter ball rises vertically up and
does not fly sideways. This is head-on collision.

You can try to find the best combination of balls which gives you
the best effect. You can measure the masses on a standard balance.

final velocities of the balls.

We leave it to you to think how you can determine the initial and

_1 mm,
- 1i
2m,+m,

which is a positive quantity as expected.

Consider next an elastic collision. Using the
above nomenclature with 8, = 8, = 0, the
momentum and kinetic energy conservation
equations are

mu,, = mu, + my,, (6.24)

myu;, = myoy, + myus (6.25)
From Egs. (6.24) and (6.25) it follows that,
myv, (v, — v} =M, (L, — v )
or, vy vy —vy)=0f -y
= (v —v ), +o4)

Hence, S Ugp =0y + Uy (6.26)

Substituting this in Eq. (6.24), we obtain

(m;, —m,)
by = Dy 6.27
Yomi+m, 6.27)
_ 2myuy,
and Uy = —m1 T m, (6.28)

Thus, the ‘unknowns’ {v,, v,} are obtained in
terms of the ‘knowns’ {m,, m,, v, }. Special cases
of our analysis are interesting.

Case I : If the two masses are equal

v,=0
Dy = Uy
The first mass comes to rest and pushes off the

second mass with its initial speed on collision.

Case II : If one mass dominates, e.g. m, > >m,
Uy =70y, Dpp 0
The heavier mass is undisturbed while the

lighter mass reverses its velocity.
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to 10° m s so that it can have a high
probability of interacting with isotope %35 U
and causing it to fission. Show that a
neutron can lose most of its kinetic energy
in an elastic collision with a light nuclei
like deuterium or carbon which has a mass
of only a few times the neutron mass. The
material making up the light nuclei, usually
heavy water (D,O) or graphite, is called a
moderator.

Answer The initial kinetic energy of the neutron
is

1
K, = 5 mlvlzi
while its final kinetic energy from Eq. (6.27)

2

1 9 1 m, —m, 9

fr =My =3 (m
1 2

The fractional kinetic energy lost is

2
K m, —m
flz—lfz(—l 2]

K, m, +my

while the fractional kinetic energy gained by the
moderating nuclei K, /K, is

f, = 1 —f, (elastic collision)
_4Amm,

(ml +m, )2

One can also verify this result by substituting
from Eq. (6.28).

For deuterium m, = 2m, and we obtain
J, =1/9 while f, = 8/9. Almost 90% of the
neutron’s energy is transferred to deuterium. For
carbon f, = 71.6% and f, = 28.4%. In practice,
however, this number is smaller since head-on
collisions are rare. |

If the initial velocities and final velocities of
both the bodies are along the same straight line,
then it is called a one-dimensional collision, or
head-on collision. In the case of small spherical
bodies, this is possible if the direction of travel
of body 1 passes through the centre of body 2
which is at rest. In general, the collision is two-
dimensional, where the initial velocities and the
final velocities lie in a plane.

6.12.3 Collisions in Two Dimensions

Fig. 6.10 also depicts the collision of a moving
mass m, with the stationary mass m,. Linear
momentum is conserved in such a collision.
Since momentum is a vector this implies three
equations for the three directions {x, y, z}.
Consider the plane determined by the final
velocity directions of m and m,and choose it to
be the x-y plane. The conservation of the
z-component of the linear momentum implies
that the entire collision is in the x-y plane. The
x- and y-component equations are

m,v,, = mu,,cos 8  +myu, cos (6.29)
0 = mv,, sin 6, - m,v,,sin 6, (6.30)

One knows {m,, m,, v, } in most situations. There
are thus four unknowns {v, [+ Uy 0, and 6.}, and
only two equations. If § =0 , = 0, we regain
Eq. (6.24) for one dimensional collision.

If, further the collision is elastic,

1, 1
Sy =5

5 5 (6.31)

1’-’1f2 +%m~2'-’2f2
We obtain an additional equation. That still
leaves us one equation short. At least one of
the four unknowns, say 8 |, must be made known
for the problem to be solvable. For example, 6,
can be determined by moving a detector in an
angular fashion from the x to the y axis. Given
{m, m, v,,, 8} we can determine {vlf, Uy A
from Eqgs. (6.29)-(6.31).

» Example 6.13 Consider the collision
depicted in Fig. 6.10 to be between two
billiard balls with equal masses m, = m,.
The first ball is called the cue while the
second ball is called the target. The
billiard player wants to ‘sink’ the target
ball in a corner pocket, which is at an
angle 6, = 37°. Assume that the collision
is elastic and that friction and rotational
motion are not important. Obtain 6 ,.

Answer From momentum conservation, since
the masses are equal

Vi =V d Vo

or 2_
U= (v1f+v2f)'(v1f+vzr)

2 2
S0 U 2V 0V,
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= v, +0,,2 +20,,0,,cos (6 +37°) } (6.32)
Since the collision is elastic and m, = m, it follows
from conservation of kinetic energy that

(6.33)

2_ 2 2
D" = U7 T U,y

Comparing Egs. (6.32) and (6.33), we get
cos (6, +37°) =0

or 6, +37° =90°

Thus, 6,=53°

This proves the following result : when two equal
masses undergo a glancing elastic collision with
one of them at rest, after the collision, they will
move at right angles to each other. |

The matter simplifies greatly if we consider
spherical masses with smooth surfaces, and
assume that collision takes place only when the
bodies touch each other. This is what happens
in the games of marbles, carrom and billiards.

In our everyday world, collisions take place only
when two bodies touch each other. But consider
a comet coming from far distances to the sun, or
alpha particle coming towards a nucleus and
going away in some direction. Here we have to
deal with forces involving action at a distance.
Such an event is called scattering. The velocities
and directions in which the two particles go away
depend on their initial velocities as well as the
type of interaction between them, their masses,
shapes and sizes.

SUMMARY

1. The work-energy theorem states that the change in kinetic energy of a body is the work

done by the net force on the body.

K.-K=W,_

2. A force is conservative if (i) {Nori{ done by it on an object is path independent and
depends only on the end points {x, xj}, or (ii) the work done by the force is zero for an
arbitrary closed path taken by the object such that it returns to its initial position.

3. For a conservative force in one dimension, we may define a potential energy function V(xj

such that
Fx)=— dv (x)
dx
S5

V.-V, = [ F(x)dx

Xi

or

4. The principle of conservation of mechanical energy states that the total mechanical
energy of a body remains constant if the only forces that act on the body are conservative.
5. The gravitational potential energy of a particle of mass m at a height x about the earth’s

surface is
Vi) =mgx

where the variation of g with height is ignored.
6. The elastic potential energy of a spring of force constant k and extension x is

V(x):ékx2

7. The scalar or dot product of two vectors A and B is written as A.B and is a scalar
quantity given by : A-B = ABcos 6, where 6 is the angle between A and B. It can be
positive, negative or zero depending upon the value of 6. The scalar product of two
vectors can be interpreted as the product of magnitude of one vector and component
of the other vector along the first vector. For unit vectors :

j.izjj-k-k=landi.j-j k-k-i-0
Scalar products obey the commutative and the distributive laws.



